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Abstract.  Communication with Low-Earth Orbit (LEO) satellites requires the set up of a ground 
station which is a complex and costly installation. Moreover, a LEO satellite is accessible only 
during certain time slots from a given ground station. In other words, access to LEO satellites is 
on an intermittent basis and is constrained by the availability of ground stations.  
 
The work presented in this paper aims at augmenting the accessibility to the services offered by 
LEO satellites. We have devised a concept of virtual ground station available over the Internet. A 
virtual ground station can be used by any client with a computer attached to the Internet which 
augments the degree of accessibility. Besides, a virtual ground station and its clients don't have 
to be collocated. A client can access a satellite as long as a remote virtual ground station has 
access to it. As long as there are several virtual ground stations distributed at several locations, 
this architecture augments the degree of accessibility to satellites.  
 
The design of the virtual ground station is based on CORBA distributed components. The virtual 
ground station has been developed using an application framework we have created, hence 
reducing the amount of programming required to obtain it. Moreover, we have developed a client 
satellite tracking software that uses our virtual ground station.  
 
In this paper, we review the design and implementation of our virtual ground station concept. We 
also present the companion client satellite tracking software that we have developed.  
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1. Introduction 
 
Since the launch of Sputnik in late 1957, 
satellite communications (satcom) have come 
a long way. From the transmission of a simple 
beacon, years of improvements brought 
satcom to the era of multimedia. Satellites are 
now used for many applications ranging from 
scientific earth and atmospheric studies to 
military tactical communications. Over the 
years, the number of satellites has constantly 
increased and as a consequence there are now 
more satcom services available.  
 
However, the relative abundance of satcom 
services does not necessarily mean easy 
access. In fact, LEO satellites services have 
always been rather difficult to use. One of the 
reasons for this is the intricacy of the satellite 
tracking process. This process requires the 
simultaneous coordination of frequency 
tuning, antenna pointing and data acquisition. 
Only training can provide the skills required to 
manually track a LEO satellite. Consequently, 
helped by the emergence of personal 
computers, software applications were 
developed in order to address this issue. Such 
applications facilitate the tracking process by 
interfacing with the tracking equipment in 
order to automate all of the manipulations. 
The SatSy application1 developed by our 
group represents an example of such an 
application. Nowadays, most tracking 
applications offer sophisticated graphical user 
interfaces (GUI) and they effectively reduce 
the tracking process to a few mouse clicks.  
 
Nevertheless, those tracking applications don’t 
address the most important problem in using 
satcom services, which is the limited number 
of ground stations. The basic reason why there 
isn’t more ground stations is that they are 
rather expensive and complex to install. In 
addition, satcom antennas are quite 
cumbersome in that they require adequate 
space and have to be properly located. As of 

now, like SatSy, the vast majority of tracking 
applications are single computer applications. 
This type of application can only be used from 
the computer it is installed on. Since tracking 
applications need to be installed on a 
computer linked to tracking equipment, they 
become just as much inaccessible as the 
ground stations themselves. However, it is 
possible to overcome this limitation by 
connecting the tracking computers to a 
network and by using a network-enabled 
tracking application. This fairly new type of 
application enables users to start tracking 
sessions remotely from any computer 
connected to the same network as the ground 
station. When coupled to the Internet, this 
solution significantly increases ground 
stations accessibility. 
 
To the best of our knowledge, our group has 
created the very first Internet-enabled tracking 
application. This software was devised in 
1996 through a project called WATOO2. More 
recently, similar applications were created3,4,5. 
The WATOO software enables users to start 
tracking sessions through the Internet. For 
example, during demonstrations, WATOO 
was often used to track the Russian Space 
Station Mir from remote cities. Actually, it 
was even used to record radio amateur 
communications with MIR cosmonauts. As 
opposed to a single computer tracking 
application, a network-enabled version is 
divided into two parts: a server and a client. 
The server is very similar to the single 
computer version except it doesn’t provide a 
user interface. The interface is provided by the 
client which is usually installed on remote 
computers. In this design, the client is 
responsible for sending commands to the 
server (through the network) based on user 
actions. The server is responsible for 
interpreting the commands to control tracking 
sessions. All the user needs is a computer 
connected to the network and the client 
application.  
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However, networking one single ground 
station isn’t enough. The true benefit of this 
solution comes from networking many ground 
stations from all around the world. This 
enables a user to track a satellite no matter 
where it is, as long as there is a ground station 
in its footprint. Furthermore, with a sufficient 
number of networked ground stations, it is 
even possible to address another problem 
related to LEO satcom services: the 
intermittent nature of the services. In effect, 
on average, satcom services are only available 
a few times a day and usually for a maximum 
of approximately 15 minutes. Thus, even 
when an uninterrupted download of a file 
requires less than one hour, it can take several 
hours of elapsed time to download using a 
LEO satellite. In other words, several passes 
may be required to download a single file 
from a LEO satellite. One way to improve this 
situation is to consecutively use many 
different remote ground stations. We call this 
an extended tracking session.  
 
The implementation of this solution requires a 
widespread use of a network-enabled tracking 
application. The first version of the WATOO 
server is an example of an application that 
could have been used to achieve this goal. 
However, because it was platform dependent, 
lots of modifications would have been 
required for each different ground station. 
Consequently, the WATOO software was 
completely redesigned in 1998. The WATOO 
server was developed such that it would be 
fairly simple to customize it for different 
ground stations. Also, technologies such as 
CORBA and JAVA were used to provide as 
much platform independence as possible. As 
of the GUI client, it was redesigned to take 
advantage of the new tracking server.  
 
This paper presents the new design of the 
WATOO software. The first section offers a 
short overview of CORBA and distributed 
objects. The following section presents the 

design and implementation of our virtual 
ground station. The last section presents the 
GUI tracking client through a few screen 
shots. Finally, this paper ends with a 
conclusion and a couple ideas for future 
works. 
 
 

2. CORBA Basics 
 
The Common Object Request Broker 
Architecture (CORBA), is a specification 
produced by the Object Management Group 
(OMG) that addresses interoperability in 
distributed heterogeneous environments. The 
CORBA standard represents industry 
consensus from more than 800 companies. 
CORBA assumes a heterogeneous 
environment in which clients and servers 
implemented in different languages on 
different platforms can interoperate. There are 
many implementations of the CORBA 
standard, some of them in the form of 
commercial products that have demonstrated 
strong market acceptance. 
 
CORBA enables clients and servers to interact 
together through a middleware called an 
Object Request Broker (ORB). The ORB is 
the mediator responsible for brokering 
interactions between clients and servers. Its 
job is to provide object location and access 
transparency by facilitating clients’ use of 
servers’ services. Since CORBA is object-
oriented, clients and servers are represented as 
objects and services as methods. The set of 
public services of a server object is 
represented as an interface specification that 
must be specified using the CORBA standard 
Interface Definition Language (IDL).  
 
Through the use of an IDL compiler, an 
interface specification is compiled to generate 
code into native language such as JAVA, 
C++, SmallTalk and others. Among other 
things, the IDL compiler generates a client 
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proxy class and a server skeleton class. Both 
classes are generated such that they can 
interact together through an ORB. To be more 
precise, an ORB is a set of classes that are 
provided by the ORB vendor.  
 
Figure 1 illustrates the process through which 
an IDL interface specification (specification 
for short) is transformed into objects. 
 

 
Figure 1.  Generation of the Proxy and Skeleton 
Objects. 
 
The proxy object represents a remote object 
locally. For example, if a client object needs 
to use the services of a remote object called 
FOO, it actually uses the services of a local 
FOO proxy. When accessed, the local proxy 
forwards all method calls to the remote FOO 
object using the ORB communication layer 
(see Figure 2). The client object doesn’t know 
where the remote object is located. To create 
the proxy object, the generated proxy class is 
compiled with no modifications whatsoever. 
For the proxy to be accessed by the client 
object, it has to be generated in the same 

programming language. Therefore, if the 
client object is implemented using JAVA, the 
proxy class will have to be generated in JAVA 
as well. This local proxy can then be used to 
access a C++ remote object for which a C++ 
skeleton is needed as depicted in Figure 2. 
 

Figure 2. Communications Between a Client and a 
Remote Object. 

 
To generate the JAVA FOO proxy class and 
C++ skeleton class, different IDL compilers 
are used. Figure 3 illustrates how this works. 
As mentioned before, both the proxy and the 
skeleton are generated such that they use the 
ORB services to interact together. 
Conceptually, an ORB is a communication 
layer. To communicate, it uses a standard 
protocol called General Inter-ORB Protocol 
(GIOP). This protocol is completely 
independent of programming languages and of 
execution environments (it takes care of byte-
ordering issues). The ORB is responsible for 
mapping the generic constructs of GIOP (ex: 
method calls) to the native programming 
language and execution environment it is 
written for. Consequently, as shown in Figure 
2, two ORBs are needed to enable 
communications between a JAVA and a C++ 
object. 
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Figure 3. Using Different IDL Compilers to Offer 
Heterogeneity. 

 
The skeleton class is where the developer 
implements the services (methods) of the 
server object. A generated skeleton is only 
partially implemented and needs to be filled 
in. As with the proxy, the implementation 
language dictates which IDL compiler will be 
used to generate the skeleton. In the FOO 
example, the skeleton is implemented in C++. 
The portion of the skeleton that is already 
implemented pertains to all the ORB 
interactions. This way the developer doesn’t 
need to interact with the ORB at any time. All 
that needs to be done is to implement the 
methods representing the object’s services. 
The generated code takes care of everything 
else. 
 
The only thing that remains to be explained is 
how the local proxy finds the remote object. 
This happens in three steps. First, the remote 
object registers to a naming server. It does so 
by using an ORB service. ORB vendors 
provide naming servers as separate 
applications. They keep track of the name and 
location of every registered object. The second 
step consists of the client finding the remote 
object. The client object does this by querying 
a naming server through an ORB service. 

When the object is found, its reference is 
returned to the client object where it is used to 
create a proxy object. From there on, the client 
object can invoke methods on the remote 
object through the local proxy. There are 
many ways to use naming servers. The easiest 
way is to have clients and servers use the same 
naming server. It is also possible to use many 
different naming servers all connected 
together into a federation but this falls out of 
the scope of this basic. 
 
In summary, using CORBA objects starts with 
an IDL interface specification. The 
specification is then compiled to generate 
specific language bindings for the clients 
(proxies) and the server (skeleton). The client 
object is written such that it uses the local 
proxy to get access to the server object’s 
services. The services are implemented within 
the skeleton and compiled into a server object. 
The server object is registered to a naming 
server so that the client object can find it using 
a well-known name. The client object creates 
a local proxy from a remote object reference 
and starts invoking methods.  
 
CORBA is fairly simple to use and provides 
numerous advantages. It is available for many 
different platforms, operating systems, and 
programming languages. This technology has 
matured over the last 10 years and it has been 
used for many types of application ranging 
from military real-time communications to 
secure online banking.  
 
The main reason why CORBA was used in the 
second version of WATOO is its 
programming language and execution 
environment independence. Thus, the new 
WATOO server is now composed of a 
collection of CORBA objects that could all be 
implemented with a different language. For 
example, if one of our JAVA CORBA object 
is considered not to be performing fast 
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enough, it could be reimplemented using C++ 
without any impacts on the remaining objects.  
 

3. Creating a Virtual Ground Station 
 
This section presents the concept of a virtual 
ground station and offers a detailed 
description of its design. The framework we 
have developed to facilitate the creation of 
virtual ground stations is described with an 
example.  
 
A virtual ground station is a software 
representation of a real life ground station. It 
is equipped with virtual equipement as a 
transceiver, an antenna and a rotor controller. 
Virtual equipment offers the same services its 
real life counter part offers. For example, the 
virtual transceiver can be turned on or off and 
its mode and frequency can be set. Like a 
ground station equipped with a tracking 
application, the virtual ground station offers 
services to start and stop tracking sessions. In 
addition, it has an owner and it knows where 
it’s located in terms of latitude, longitude, and 
altitude.  
 

Figure 4.  Three Layers of Services 

 
The services offered by a virtual ground 
station can be grouped into two superimposed 
layers corresponding to layers 1 and 2 of 
Figure 4. Services contained in layer 1 pertain 
to the control of tracking equipment. Layer 2 
services deal with the computation of satellite 
position, pass predictions, and such. The 
virtual ground station does not provide 
services of layer 3. These services are 
implemented by end-user applications. The 
WATOO GUI provides layer 3 services like 

the plotting of an orbital trace on Earth 
projections. The fact that both layers 1 and 2 
are accessible from layer 3 offers a great 
degree of flexibility for the creation of new 
services.  
 
The segregation of services into layers also 
helps for the creation of an application 
framework. This type of framework is a full 
implementation of an application that can 
easily be customized by the replacement of 
specialized components only. For example, 
the services of layer 1 will most likely have to 
be customized for different ground stations as 
opposed to services of layer 2. Consequently, 
we have created a framework that dictates 
how services of layer 2 interact with services 
of layer 1. This way, services of layer 1 can 
easily be replaced without changing anything 
in layer 2. Moreover, the components 
providing the layer 1 services have been 
designed such that they only need to be 
partially customized. As you will see in the 
implementation section, the use of an 
application framework coupled with 
technologies like CORBA and JAVA 
augments platform independence and 
simplifies customization when necessary. 
 
3.1 Analysis and Design 

Figure 5.  Layer 1 Use Cases 

This subsection starts with a high-level 
description of the use-cases regarding services 
a virtual ground station must provide. Then, it 
describes a simplified diagram of a physical 
ground station. This diagram is helpful in 
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3. Applications 
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defining the initial classes shown at the end of 
this section.  
 
Services of layer 1 are illustrated with two 
use-cases shown in Figure 5. It points out that 
a virtual ground station needs to be able to 
steer an antenna and configure a transceiver.  
Here’s a description of the functionality 
provided by the services.  
 
+ Antenna Steering: this service is used to 
change or obtain the direction where the 
antenna is pointing. Two angles define this 
direction: azimuth and elevation. The azimuth 
varies between –180 and 180 degrees. The 
elevation varies between 0 and 180 degrees.  
 
+ Transceiver Configuration: this service is 
used to communicate with a Satellite. The 
transceiver must offer services to be turned on 
and off as well as services to select a 
communication frequency and mode.  

Figure 6.  Layer 2 Use Cases. 

 
Figure 6 illustrates the four use-cases of layer 
2 services. It shows that a virtual ground 
station needs to be able to compute a 
satellite’s position, track it, make pass 
predictions and provide general information 

on itself. Here’s a description of the 
functionality provided by the services. 
 
+ Satellite Position Computing: this service is 
used to obtain a satellite’s position at a 
specific time. This position is defined by a 
longitude, a latitude, and an altitude relative to 
the center of the Earth.  
 
+ Satellite Tracking: this service is used to 
start and stop tracking sessions. To do so, it 
uses the name of a satellite. The 
communication mode and frequency are 
automatically chosen. During a tracking 
session, it is responsible for using other 
services to compute the satellite’s position, 
adjust the radio frequency to cope for Doppler 
shift, and steer the antenna based on the 
ground station location. 
 
+ Pass Prediction: this service is used to 
create a pass prediction for a satellite and a 
ground station location. It can be used to 
determine the next pass or any pass during a 
specified period.  
 
+ Ground Station Information: This service is 
used to provide the name of the owner of the 
ground station and to provide the location of 
the ground station in terms of longitude, 
latitude, and altitude. In addition, it provides 
the minimum elevation angle the antenna must 
positioned to before a line of sight can be 
established with satellites. For example, it is 
possible that a mountain next to the ground 
station blocks the first 4 degrees of elevation 
of the antenna. In this case, the minimum 
elevation is set to 4.   
 
All of the above services are provided by the 
virtual ground station and must be available 
through the Internet. End-user applications 
can use these services and the WATOO GUI 
client is an example of such an application. 
Figure 7 shows how a virtual ground station is 
viewed from a network.  

Virutal Ground 
Station

Compute Satellite
Position

Track a Satellite

Make a Pass
Prediction

Get Ground Station
Information
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Figure 7.  A Virtual Ground Station Component 
View. 

 

Figure 8.  Initial Class Diagram of the Four Main 
Components. 

 
Based on Figure 7, it is easy to derive three of 
the four main classes of our design. Those 
classes are named Transceiver, AntennaRotor, 
and GroundStation. The first two classes will 
provide the layer 1 services. The 
GroundStation class provides the tracking and 

information services of layer 2. The fourth 
main class is called SatelliteTracker and is 
responsible for both computing the satellite’s 
position and for making pass predictions. 
Thus, the SatelliteTracker provides the 
remaining services of layer 2. The reason why 
they’re not provided by the GroundStation is 
that there are many different algorithms for 
computing satellites position. Therefore, 
isolating those services in a separate class 
makes them easier to customize. The initial 
UML6 class diagram is shown in Figure 8. 
This diagrams shows that the GroundStation 
is composed of one AntennaRotor, one 
SatelliteTracker, and one RadioDriver. The 
cardinality also indicates that the classes part 
of the GroundStation can only be part of one 
GroundStation at the time.  
 
During the analysis phase, the main classes 
and their initial methods are defined. In the 
design phase, the definition of these main 
classes is refined and all utility classes are 
identified. To avoid repetitive diagrams, the 
refining process will not be described in this 
paper. A detailed description of all the classes 
is included in the first author’s master’s 
thesis7. This paper will only introduce the four 
main classes and their important utility 
classes. 
 
Figure 9 presents a detailed definition of the 
GroundStation class and its utility class 
Position. As shown in the class diagram, the 
GroundStation provides two methods to start 
and stop tracking sessions. To start a tracking 
session, it is necessary to provide a Satellite 
object as well as communication modes and 
frequencies. Other methods provide 
information like the name of the ground 
station, its position and its minimum elevation 
angle. Finally, additional methods provide 
access to the tracking components.  As shown 
in the class diagram, all three classes  
SatelliteTracker, Transceiver, and 
AntennaRotor are declared “Abstract”. For the 
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GroundStation, this represents a guaranty that 
these classes will always have the same 
interface. It is also a guaranty to the 
developers that any of these three classes can 
be changed without modifying the 
GroundStation class. That is, if the 
customized class extends the appropriate 
abstract class. 
 

Figure 10.  Tranceiver Class Definition. 

The Tranceiver class, as shown in Figure 10, 
provides services to configure both frequency 
and the mode. The frequency is specified in 

MHz as a string of the following format: 
“xxxx.yyyyy”. The mode is also specified as a 
string for which the following values are 
accepted: “LSB”, “USB”, “CW”, “CWN”, 
“FM”, and “FMN”. Predefined class attributes 
are provided for this purpose.  

Figure 11.  AntennaRotor Class Definition. 

The AntennaRotor class is defined as shown in 
Figure 11. It provides services to obtain and 
change the antenna pointing through the use of 

Direction

getAzimuthInDegree () : Double
getAzimuthInRadian () : Double
getElevationInDegree () : Double
getElevationInRadian () : Double
setAzimuthInDegree (deg : Double) : void
setAzimuthInRadian (rad : Double) : void
setElevationInDegree (deg : Double) : void
setElevationInRadian (rad : Double) : void

AntennaRotor

getAzimuth () : Double
getElevation () : Double
getDirection () : Direction
setAzimuth (azimuth : Double) : void
setElevation (elevation : Double) : void
setDirection (direction : Direction) : void

<<Abstract>>

1

1

1

1

AntennaRotor
<<Abstract>>

PositionSatelliteTracker
<<Abstract>>

Transceiver
<<Abstract>>

1

1

GroundStation

getName () : String
getPosition () : Position
getMinimumElevation () : Integer
getSatelliteTracker () : SatelliteTracker
getTransceiver () : Transceiver
getAntennaRotor () : AntennaRotor
startTracking (satellite : String) : Boolean
stopTracking () : Boolean

1

1

1

1 1

1

1

1

Satellite

1

1

1

1 1

1

Figure 9.  GroundStation Class Diagram. 

Transceiver
$ LSB : String
$ USB : String
$ CW : String
$ CWN : String
$ FM : String
$ FMN : String

setMode (mode : String) : Boolean
setFrequency (freq : String) : Boolean
getMode () : String
getFrequency () : String
turnOn () : Boolean
turnOff () : Boolean

<<Abstract>>
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two angles: azimuth and elevation. Also 
shown in the figure is the Direction class 
which is simply a helper class to simplify the 
manipulation of the two angles.  

Figure 12.  SatelliteTracker Class Definition. 

 
Figure 12 shows the SatelliteTracker class. It 
is used to obtain a satellite’s position based on 
either real time or a specific time. The satellite 
selection is done by calling the setSatellite 
method using a Satellite object. The Satellite 
class is a helper class. It is a placeholder for 
the Keplerian elements describing a past 
location of the satellite. The algorithm 

implemented within the getSSPAt method uses 
that information to compute the position of a 
satellite. The getPrediction method returns a 
pass prediction in a string table containing the 
rise and set time of the satellite, the antenna 
steering angles and Doppler shift for each 
minute during the pass. Finally, the Position 
class is another helper class very similar to the 
Direction class. 

Figure 13.  IDL Specification for the GroundStation 
Component.  

 
As it was explained in the CORBA Basics 
section, objects that have to be accessed 
remotely need an IDL interface specification. 
Consequently, the virtual ground station needs 
an IDL specification (Figure 13) since it will 
be used by remote end-user application such 
as our WATOO GUI client.  Other 
components that need to be distributed also 
require an IDL specification. For conciseness, 
their IDL specification will not be presented in 
this paper.  
 
3.2 Implementation 
 
This subsection starts with a description of the 
tracking equipment of our real ground station. 
Then it explains how we created a virtual 
ground station using the application 
framework described earlier.  
 

#include “SatelliteTracker.idl” 
#include “Transceiver.idl” 
#include “AntennaRotor.idl” 
#include “Position.idl” 
 
interface GroundStation { 
string getName(); 
Position getPosition(); 
long getMinimumElevation(); 
SatelliteTracker getSatelliteTracker(); 
Tranceiver getTransceiver(); 
AntennaRotor getAntennaRotor(); 
void startTracking(in string sattellite); 
void stopTracking(); }; 

Satellite

getName () : String
getNumber () : Integer
getEpochTime () : Double
getMeanAnomaly () : Double
getMeanMotion () : Double
getInclination () : Double
getEccentricity () : Double
getArgOfPerigee () : Double
getRAAN () : Double
getRevolutionNumber () : Integer
getDecayRate () : Double

1
1

Position

getLatitudeInDegree () : Double
getLatitudeInRadian () : Double
getLongitudeInDegree () : Double
getLongitudeInRadian () : Double
setLatitudeInDegree (deg : Double) : void
setLatitudeInRadian (rad : Double) : void
setLongitudeInDegree (deg : Double) : void
setLogitudeInRadian (rad : Double) : void
getAltitude () : double

SatelliteTracker

setSatellite (sat : Satellite) : Boolean
getSatellite () : Satellite
getSSP () : Position
getSSPAt (time : Calendar) : Position
getPrediction (startTime, endTime, minElevation)

<<Abstract>>

1
1
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Our ground station is equipped with a 
transceiver, an antenna rotor controller and a 
personal computer. The transceiver is a Yaesu 
FT-736R model. The PC can control it 
through the serial interface. The rotor 
controller is also from Yaesu and can be 
controlled by the PC using a Kansas City 
Tracker (KCT) interface. The PC we used 
runs both Windows NT version 4 and RedHat 
Linux version 5.  
 

Figure 14.  TwoBodySatelliteTracker Class 
Definition. 
 
The first step in developing a virtual ground 
station is to implement the SatelliteTracker 
class. This class provides some layer 2 
services. However, since all layer 2 services 
are not related to the tracking equipment, they 
are platform independent when implemented 
using JAVA. Consequently, once a 
SatelliteTracker is implemented, it can be 
used as-is for any virtual ground station. For 
the WATOO project, a two-body8 satellite 
tracker has been implemented using JAVA. 
Since this SatelliteTracker is provided with 
our WATOO software, this first step isn’t 
necessary where JAVA is available. Figure 14 
illustrates the class definition of the two-body 
satellite tracker we developed. Not shown on 
the diagram are the private utility methods 
implemented to support getSSPAt which is the 
only method that must be implemented. 
 
The second step is to implement the two 
classes that provide the layer 1 services:  
Transceiver and AntennaRotor. In our case, 

the Tranceiver needs to control a Yaesu FT-
736R through a serial interface. The control is 
done using a specific protocol that defines a 
packet format, some commands and a byte 
order. The Transceiver we implemented is 
called YaesuFT736R and it uses JAVAComm9 
to access the serial interface. JAVAComm is a 
platform independent way if accessing serial 
interfaces. Figure 15 shows the class 
definition of our specialized Transceiver with 
the methods that had to be implemented. 

Figure 15.  YaesuFT736R Class Definition. 

 

Figure 16.  KansasCityTracker Class Definition. 

 
The AntennaRotor we implemented is called 
KansasCityTracker as shown in Figure 16. It 
lists the only four methods that need to be 
implemented. Communication with the KCT 
interface is done through a memory mapped 
port using a bit-wise protocol. JAVA allows 

TwoBodySatelliteTracker

getSSPAt (time : Calendar) : Position

SatelliteTracker
<<Abstract>>

Transceiver
<<Abstract>>

YaesuFT736R

setMode (mode : String) : Boolean
setFrequency (freq : String) : Boolean
turnOn () : Boolean
turnOff () : Boolean

AntennaRotor
<<Abstract>>

KansasCityTracker

getAzimuth () : Double
getElevation () : Double
setAzimuth (azimuth : Double) : void
setElevation (elevation : Double) : void
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direct memory access but it has to be done 
with the JAVA Native Interface (JNI)10 which 
breaks the platform independence. 
Consequently, our AntennaRotor 
specialization is platform dependent as 
opposed to our Transceiver. However, we 
designed the KansasCityTracker such that 
most of it is written in pure JAVA. The 
platform dependant code is limited to only 
three lines of C code for Linux and 
approximately 30 lines for WindowsNT4. 
 

Figure 17.  Virtual Ground Station Configuration 
File. 

 
The last step in developing a virtual ground 
station is to create a configuration file to be 
read by GroundStation. This file (Figure 17) 
supplies ground station information such as its 
name, its location and its minimum elevation 
angle. The file also dictates which 
AntennaRotor class, Transceiver class, and 
SatelliteTracker class the virtual ground 
station should use. These classes can be 
changed and used without recompiling the 
GroundStation. This is made possible by the 
JAVA’s dynamic loader10.  
 
Once the layer 1 one classes are crated, all that 
needs to be done is load the GroundStation 
object. This object starts by reading the 
configuration file and instantiates the classes 

that will be providing the layer 1 and 2 
services. Then, uses them during tracking 
sessions.  
 
Thanks to the framework design of the virtual 
ground station, only two classes need to be 
implemented for each different station: 
Transceiver and AntennaRotor. In fact, 
because the Transceiver class we implemented 
(ie: YaesuFT736R) is platform independent, 
we were able to use it as-is on both Linux and 
Windows. Thus, when we created the 
windows version of our virtual ground station, 
all we had to do is adapt the 
KansasCityTracker. Everything else, 
including the SatelliteTracker, remained 
unchanged. 
 
 

4. GUI Client Application 
 
The client application also had to be 
redesigned because it wasn’t CORBA capable. 
Also, the GUI was migrated from a developers 
testing tool to a more aesthetic end-user 
application. This section describes the new 
WATOO GUI client through different screen 
shots.  
 
First, lets start with the tracking window 
shown in Figure 18. This window contains an 
equidistant projection of the earth on which 
the position of each selected satellites is 
plotted. In this example, the satellites are from 
the Iridium constellation. To add a satellite to 
the projection, its name must be typed in the 
upper-left corner text field. After a satellite 
has been added, the plotting needs to be 
started with the time-related buttons show in 
Figure 19. The slider shown on the same 
figure is used to make time go forward or 
backward.  As you can see in Figure 20, the 
projection contains a ground station named  
Sherbrooke. Although the GUI client doesn’t 
provide a way of adding more ground stations, 
the projection can take any number of them.  

groundStation.name = Sherbrooke1 
groundStation.position.latitude = 45.24 
groundStation.position.longitude = -71.46 
groundStation.position.altitude = 0.225 
groundStation.minimumElevation = 3 
 
satelliteTracker.className=  

TwoBodySatelliteTracker 
 

antennaRotor.className = KansasCityTracker 
antennaRotor.instantiationParms = 03e0 
 
transceiver.className = YaesuFT736R 
transceiver. instantiationParms = COM2 
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Figure 19.  Tracking Window Time Related 
Controls. 

Figure 20.  Sherbrooke Ground Station. 

 
To start a tracking session, both a satellite and 
a ground station must be selected. Clicking on 
them in the projection window does this. To 
show that a selection has been made, the status 
bar at the bottom of the projection window 
displays tracking information. When the 
satellite’s footprint reaches the ground station, 
the tracking session begins. From that 
moment, and until the satellites sets, the 
information of the status bar is displayed in a 
different colour.  
 
However, until the ground station’s naming 
server hasn’t been specified, the tracking 
session doesn’t actually occur physically. The 
reason for this is that the GUI client doesn’t 
know where to get the ground station’s 
CORBA services. Therefore, the address of a 

Figure 18.   Equidistant Projection Window of the WATOO Tracking Application. 
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naming server must be provided as shown in 
Figure 21. Clicking on the “Enable ORB” 
button of the tracking window opens that 
configuration window. One thing to mention 
is that the GUI client allows more than one 
projection window to be opened at one time. 
This means that it is possible to start more 

than one tracking session concurrently. 
 

Figure 21.  CORBA Naming Server Configuration 

 
 

5. Conclusion 
 
The number of LEO satellites increases each 
year. They offer increasingly sophisticated 
services that are used by scientists from all 
around the world. Some radio amateur 
satellites even provide packet communication 
services. The utilisation of LEO satcom 
services requires ground stations that are 
expensive and complex to employ. As a result, 
ground stations are quite uncommon and 
inaccessible which limits the use of LEO 
satcom services.  
 
The contributions presented in this paper 
address the accessibility of satcom services 
through the concept of a virtual ground station 
connected to the Internet. We have 
demonstrated that this concept increases 
accessibility of tracking equipment since we 
were able to launch tracking sessions from 
remote cites. Furthermore, we realized during 

the course of our project that it would be 
possible to launch extended tracking sessions 
using many different ground stations 
successively.  This new type of tracking 
session offers a great potential in terms of 
reducing the intermittence of satcom services.  
 
The virtual ground station presented is 
designed such that it is easy to adapt to 
different tracking equipment. In addition, it 
has been implemented using technologies such 
as JAVA and CORBA for maximum platform 
independence. Only three days were required 
to create a windows version of our Linux 
virtual ground station. An example of a client 
tracking application capable of using a virtual 
ground station was presented as well. This 
GUI is also platform independent and 
illustrates how satcom services could be used 
through the Internet. 
 
In summary, the results of our research can be 
used to address some of the problems related 
to LEO satcom services, which was the goal 
of project WATOO. 
 
 
5.1 Future Work 
 
To better support extended tracking, the GUI 
client could be modified in order to automate 
the successive selection of ground stations. In 
addition, the client could be improved by 
enabling users to save tracking session 
configurations, select more than one satellite 
to track, etc. 
 
The virtual ground station could be enriched 
with new tracking equipment such as a virtual 
terminal node controller (TNC). This would 
enable the end-user application to get a hold 
of the digital information transmitted from a 
satellite.  
 
Finally, prior to its public released, the virtual 
ground station would require modifications 
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regarding security and access control. To this 
end, CORBA’s access control and security 
services would have to be investigated.  
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